Design of Plant Acoustic Frequency Technology (PAFT) as a Plant Stimulus with Automatic Control System Based on Solar Cell Technology

Refpo Rahman, Heriansyah Heriansyah, Fades Br. Gultom, Riska Ekawita

Abstract



This research aims to develop a Plant Acoustic Frequency Technology (PAFT) tool that can increase plant productivity. The Plant Acoustic Frequency Technology (PAFT) tool was developed using solar energy technology. PAFT is a technology that applies sound waves to plants. This tool uses several components such as Arduino Uno, relay, and RTC DS3231. Before being used on agricultural land, the tool is validated through the following stages: 1) testing the design of the PAFT tool, 2) testing the effectiveness of the solar panel battery, 3) testing the sound intensity and 4) testing the PAFT tool automation. Based on the analysis and testing results, the device can function properly with a stable sound output intensity of the speakers for 30 minutes. In addition, testing the battery's effectiveness shows a very good ability, namely being able to operate and charge the battery within + 5 hours. This tool can turn on automatically according to the time when conditions are sunny because the power stored in the battery is sufficient. If it is raining or cloudy, the tool will not function properly, because the battery power is not able to turn on the tool.


Keywords


Arduino Uno, Energi solar, Relay dan Pertania

References


Afifah, E., Nugrahani, M. O., Prasetyo, N. E., Berlian, I., Rinojati, N. D., & Kadarisman, N. (2015). Utilization of audio bioharmony to improve rubber (Hevea brasiliensis) growth in the nursery. Current Agriculture Research Journal, 3(1), 01–06. doi: 10.12944/carj.3.1.01

Aprilia, Y., Puspita, T., & Susanti, R. (2017). Pengaruh pemberian perlakuan suara musik terhadap pertumbuhan tanaman bayam merah (Amaranthus gangeticus Linn). Jurnal Pembelajaran Biologi, 5(2), 186–200.

Bertolino, L. T., Caine, R. S., & Gray, J. E. (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 10. doi: 10.3389/fpls.2019.00225

Cahyadi, C. I., Oka, I. G. A., & Kusyadi, D. (2020). Efisiensi recharger baterai pada pembangkit listrik tenaga surya. Edu Elektrika Journal, 9(2), 61–65.

Carlson, D. (1941) The sonic bloom growing system. Diakses pada tanggal 27 Maret 2020. http://dancarlsonsonicbloom.com/

Chowdhury, M. E. K., Lim, H.S. & Bae, H. (2014). Update on the effects of sound wave on plants. Research in Plant Disease, 20(1), 1–7. doi: 10.5423/rpd.2014.20.1.001

Hassanien, R. H. E., Hou, T-Z., Yu-feng LI, Y-F., & LI, B-M. (2014). Advances in effects of sound waves on plants. Journal of Integrative Agriculture, 13(2), 335–348. doi: 10.1016/S2095-3119(13)60492-X

Hendrawan, Y. Putra, A. H., Sumarlan, S. H., & Djoyowasito, G. (2020). Plant acoustic frequency technology control system to increase vegetative growth in red-lettuce. Telkomnika (Telecommunication Computing Electronics and Control), 18(4), 2042–2052. doi: 10.12928/TELKOMNIKA.V18I4.14158

Kadarisman, N., Agustika, D. K., Purwanto, A., Alvianty, V., & Wibowo, B. (2019). Characterization of Sound spectrum based on natural animals as an alternative source of harmonic system audio bio stimulators for increasing productivity of food plants. Journal of Physics: Conference Series, 1387(1). doi: 10.1088/1742-6596/1387/1/012098

Kadarisman, N. Sulistiani, F. A., Dwandaru, W.S.B., Wisnuwijaya, R. I., & Sugiarto, A. (2020). Audio bio harmonic with wt5001 smartchipusing solar cell. Jurnal Fisika dan Aplikasinya, 16(2), 71. doi: 10.12962/j24604682.v16i2.3750

Pujiwati, I. Aini, N., Sakti, S. P., & Guritno, B. (2018). The effect of harmonic frequency and sound intensity on the opening of stomata, growth and yield of soybean (Glycine max (L.) Merrill)’, Pertanika Journal of Tropical Agricultural Science, 41(3), 963-974.

Rahman, R. (2021). Design and manufacturing audio bioharmonic technology with manipulate peak frequencies for crop field’, pp. 4–8.

Suryadarma, I. G. P., Widiastut, Kadarisman, N., & Dwandaru, B. S.B. (2020). The increase of stomata opening area in corn plant stimulated by dundubia manifera insect sound. International Journal of Engineering Technologies and Management Research, 6(5), 107–116. doi: 10.29121/ijetmr.v6.i5.2019.377

Sutan, S. M., Prasetyo, J., & Mahbudi, I. (2018). Pengaruh paparan frekuensi gelombang bunyi terhadap fase vegetatif pertumbuhan tanaman kangkung darat (Ipomea Reptans Poir). Jurnal Keteknikan Pertanian Tropis dan Biosistem, 6(1), 72–78.




DOI: http://dx.doi.org/10.31258/jgs.12.1.11-16

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Refpo Rahman, Heriansyah Heriansyah, Fades Br. Gultom, Riska Ekawita

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal ini terdaftar dan terindeks pada: